Encoding independent wavefronts in a single metasurface for high-order optical vortex recognition

Author:

He Kai,Ning Tigang,Li Jing,Zheng Jingjing,Pei Li,Wang JianshuaiORCID

Abstract

The orbital angular momentum (OAM) of vortex beams has great potential in optical communications due to its communication confidentiality and low crosstalk. It is necessary to design a plausible OAM pattern recognition mechanism. Abandoning AI models that require large datasets, a single passive all-dielectric metasurface consisting of TiO2 nanopillars on a SiO2 substrate is used to recognize high-order optical vortexes. In this configuration, the proposed device is capable of simultaneously encoding the wavefront and the transmission paths in different incident OAM beams. Due to the presence of spin angular momentum (SAM), the vortex beam to be identified is spatially separated after passing through the metasurface. As a proof of concept, 14 signal channels are considered in the constructed metasurface, 12 of them can be encoded at will for the detection of any vortex beam with a predefined topological charge. These results make use of metasurfaces to enable OAM pattern recognition in an effective way, which may open avenues for the ultimate miniaturization of optical vortex communication and advanced OAM detection technologies.

Funder

National Natural Science Foundation of China

State Key Laboratory of Rail Traffic Control and Safety

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3