Efficient sub-pixel convolutional neural network for terahertz image super-resolution

Author:

Ruan Haihang12,Tan Zhiyong12ORCID,Chen Liangtao13,Wan Wenjain1,Cao Juncheng12

Affiliation:

1. Chinese Academy of Sciences

2. University of Chinese Academy of Sciences

3. Shanghai Tech University

Abstract

Terahertz waves are electromagnetic waves located at 0.1–10 THz, and terahertz imaging technology can be applied to security inspection, biomedicine, non-destructive testing of materials, and other fields. At present, terahertz images have unclear data and rough edges. Therefore, improving the resolution of terahertz images is one of the current hot research topics. This paper proposes an efficient terahertz image super-resolution model, which is used to extract low-resolution (LR) image features and learn the mapping of LR images to high-resolution (HR) images, and then introduce an attention mechanism to let the network pay attention to more information features. Finally, we use sub-pixel convolution to learn a set of scaling filters to upgrade the final LR feature map to an HR output, which not only reduces the model complexity, but also improves the quality of the terahertz image. The resolution reaches 31.67 db on the peak signal-to-noise ratio (PSNR) index and 0.86 on the structural similarity (SSIM) index. Experiments show that the efficient sub-pixel convolutional neural network used in this article achieves better accuracy and visual improvement compared with other terahertz image super-resolution algorithms.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3