Affiliation:
1. Chinese Academy of Sciences
2. University of Chinese Academy of Sciences
Abstract
Optical communication terminals (OCTs) with high pointing accuracy on motion platforms are highly important for establishing a global communication network. The pointing accuracy of such OCTs is seriously affected by linear and nonlinear errors generated by various sources. A method based on a parameter model and kernel weight function estimation (KWFE) is proposed to correct the pointing errors of an OCT on a motion platform. Initially, a parameter model, which has a physical meaning, is established to reduce the linear pointing errors. Then, the nonlinear pointing errors are corrected using the proposed KWFE method. Tracking star experiments are conducted to verify the efficiency of the proposed method. The parameter model reduces the initial pointing error associated with the stars used for calibration from 1311.5 µrad to 87.0 µrad. After applying parameter model correction, the KWFE method is applied to further reduce the modified pointing error associated with the stars used for calibration from 87.0 µrad to 70.5 µrad. Additionally, based on the parameter model, the KWFE method reduces the actual open-loop pointing error associated with the target stars from 93.7 µrad to 73.3 µrad. The sequential correction using the parameter model and KWFE can gradually and effectively improve the pointing accuracy of an OCT on a motion platform.
Funder
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献