Demonstration of a low loss, highly stable and re-useable edge coupler for high heralding efficiency and low g(2)(0) SOI correlated photon pair sources

Author:

Du JinyiORCID,Chen George F. R.1,Gao Hongwei1,Grieve James A.2ORCID,Tan Dawn T. H.13,Ling AlexanderORCID

Affiliation:

1. Singapore University of Technology and Design

2. Quantum Research Centre, Technology Innovation Institute

3. Institute of Microelectronics

Abstract

We report a stable, low loss method for coupling light from silicon-on-insulator (SOI) photonic chips into optical fibers. The technique is realized using an on-chip tapered waveguide and a cleaved small core optical fiber. The on-chip taper is monolithic and does not require a patterned cladding, thus simplifying the chip fabrication process. The optical fiber segment is composed of a centimeter-long small core fiber (UHNA7) which is spliced to SMF-28 fiber with less than −0.1 dB loss. We observe an overall coupling loss of −0.64 dB with this design. The chip edge and fiber tip can be butt coupled without damaging the on-chip taper or fiber. Friction between the surfaces maintains alignment leading to an observation of ±0.1 dB coupling fluctuation during a ten-day continuous measurement without use of any adhesive. This technique minimizes the potential for generating Raman noise in the fiber, and has good stability compared to coupling strategies based on longer UHNA fibers or fragile lensed fibers. We also applied the edge coupler on a correlated photon pair source and observed a raw coincidence count rate of 1.21 million cps and raw heralding efficiency of 21.3%. We achieved an auto correlation function g H (2)(0) as low as 0.0004 at the low pump power regime.

Funder

Agency for Science, Technology and Research

National Research Foundation Singapore

Ministry of Education - Singapore

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3