Abstract
Collisions refer to a striking nonlinear interaction process in dissipative systems, revealing the particle-like properties of solitons. In dual-wavelength mode-locked fiber lasers, collisions are inherent and periodic. However, how collisions influence the dynamical transitions in the dual-wavelength mode-locked state has not yet been explored. In our work, dispersion management triggers the complex interactions between solitons in the cavity. We reveal the smooth or Hopf-type bifurcation reversible transitions of dual-color soliton molecules (SMs) during the collision by the real-time spectral measurement technique of time-stretch Fourier transform. The reversible transitions between stationary SMs and vibrating SMs, reveal that the cavity parameters pass through a bifurcation point in the collision process without active external intervention. The numerical results confirm the universality of collision-induced bifurcation behavior. These findings provide new insights into collision dynamics in dual-wavelength ultrafast fiber lasers. Furthermore, the study of inter-molecular collisions is of great significance for other branches of nonlinear science.
Funder
Science and Technology Planning Project of Guangdong Province
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献