Coaxial interferometry for camera-based ultrasound-modulated optical tomography with paired illumination

Author:

Lin Guangzhong1,Wu Daixuan1ORCID,Luo Jiawei1ORCID,Liang Hanpeng1,Wei Ziyang1,Xu Yiyun1,Liu Sinuo1,Shao Lijie2,Shen Yuecheng1ORCID

Affiliation:

1. Sun Yat-sen University

2. First Affiliated Hospital of University of Science and Technology of China

Abstract

Ultrasound-modulated optical tomography (UOT), which combines the advantages of both light and ultrasound, is a promising imaging modality for deep-tissue high-resolution imaging. Among existing implementations, camera-based UOT gains huge advances in modulation depth through parallel detection. However, limited by the long exposure time and the slow framerate of modern cameras, the measurement of UOT signals always requires holographic methods with additional reference beams. This requirement increases system complexity and is susceptible to environmental disturbances. To overcome this challenge, we develop coaxial interferometry for camera-based UOT in this work. Such a coaxial scheme is enabled by employing paired illumination with slightly different optical frequencies. To measure the UOT signal, the conventional phase-stepping method in holography can be directly transplanted into coaxial interferometry. Specifically, we performed both numerical investigations and experimental validations for camera-based UOT under the proposed coaxial scheme. One-dimensional imaging for an absorptive target buried inside a scattering medium was demonstrated. With coaxial interferometry, this work presents an effective way to reduce system complexity and cope with environmental disturbances for camera-based UOT.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental and Applied Basic Research Project of Guangzhou

State Key Laboratory of Information Photonics and Optical Communications

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3