Feature detection network-based correction method for accurate nano-tomography reconstruction

Author:

Fu Tianyu12ORCID,Zhang Kai12,Wang Yan1ORCID,Wang Shanfeng1,Zhang Jin1,Yao Chunxia12,Zhou Chenpeng12,Huang Wanxia1,Yuan Qingxi12ORCID

Affiliation:

1. Chinese Academy of Sciences

2. University of Chinese Academy of Sciences

Abstract

Driven by the development of advanced x-ray optics such as Fresnel zone plates, nano-resolution full-field transmission x-ray microscopy (Nano-CT) has become a powerful technique for the non-destructive volumetric inspection of objects and has long been developed at different synchrotron radiation facilities. However, Nano-CT data are often associated with random sample jitter because of the drift or radial/axial error motion of the rotation stage during measurement. Without a proper sample jitter correction process prior to reconstruction, the use of Nano-CT in providing accurate 3D structure information for samples is almost impossible. In this paper, to realize accurate 3D reconstruction for Nano-CT, a correction method based on a feature detection neural network, which can automatically extract target features from a projective image and precisely correct sample jitter errors, is proposed, thereby resulting in high-quality nanoscale 3D reconstruction. Compared with other feature detection methods, even if the target feature is overlapped by other high-density materials or impurities, the proposed Nano-CT correction method still acquires sub-pixel accuracy in geometrical correction and is more suitable for Nano-CT reconstruction because of its universal and faster correction speed. The simulated and experimental datasets demonstrated the reliability and validity of the proposed Nano-CT correction method.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3