Efficient synchronous retrieval of OAM modes and AT strength using multi-task neural networks

Author:

Meng Pinchao,Zhuang JiabaoORCID,Zhou Linhua,Yin Weishi,Qi Dequan

Abstract

Encoding information using OAM beams as carriers greatly alleviates the capacity crisis in communication systems. When transmitted through the atmospheric channel, OAM beams are influenced by the random fluctuations in the refractive index caused by atmospheric turbulence, resulting in phase distortion and intensity dispersion of the beams, leading to severe signal interference. Due to the high randomness of atmospheric turbulence, it is essential for OAM mode recognition methods to have good stability to ensure communication quality. We establish an equivalence relationship between the continuous dynamics system and the network unit RUEM, ensuring its stability through theoretical derivation and numerical experiments. We propose a multitask neural network model, OATNN, embedded with RUEM to achieve efficient simultaneous recognition of turbulence intensity in atmospheric turbulence environments and OAM modes in free-space optical communication systems. Numerical experimental results show that under four turbulence intensity levels, the network achieves a recognition accuracy of 99.37%, and for ten modes, the recognition accuracy is 99.05%. Additionally, we explore the performance of this network in a 2000m channel transmission scenario.

Funder

Natural Science Foundation of Jilin Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3