Fiber laser strain sensor based on an optical phase-locked loop

Author:

Jin Wei,Zhang Yibo,Qin YifanORCID,Zhang YuORCID,Lou Cunkai,Gao Jiaxing,Li Shanshan,Liu Zhihai,Tian FengjunORCID,Yuan Libo1ORCID

Affiliation:

1. Guilin University of Electronics Technology

Abstract

In this Letter, we present a high-strain resolution fiber laser-based sensor (FLS) by a novel optical phase-locked loop (OPLL) interrogation technique based on a root mean square detector (RMSD). The sensor consists of a distributed feedback (DFB) fiber laser as a master laser for strain sensing and a fiber Fabry–Perot interferometer (FFPI) as a reference. The laser carrier locks to the reference by the PDH technique, and the single sideband laser working as a slave laser locks to the DFB sensing element using the OPLL technique, respectively. A strain resolution of 8.19 pε/√Hz at 1Hz and 35.5 pε in 10s is achieved in the demonstrational experiments. Significantly, the noise behaves a 1∕f distribution below 0.2Hz due to the very low pump power for the DFB sensor and an active thermostat testing environment. The proposed OPLL interrogation brings new thinking for the demodulation of FLS. This strain sensor based on FLS has a great performance in strain measurement and can be a powerful tool for geophysical research.

Funder

National Natural Science Foundation of China

National Defense Basic Scientific Research Program of China

Fundamental Research Funds of Harbin Engineering University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3