Affiliation:
1. Lanzhou University
2. RMIT University
3. Shanghai Jiao Tong University
Abstract
The manipulation of optical modes directly in a multimode waveguide without affecting the transmission of undesired signal carriers is of significance to realize a flexible and simple structured optical network-on-chip. In this Letter, an arbitrary optical mode and wavelength carrier access scheme is proposed based on a series of multimode microring resonators and one multimode bus waveguide with constant width. As a proof-of-concept, a three-mode (de)multiplexing device is designed, fabricated, and experimentally demonstrated. A new, to the best of our knowledge, phase-matching idea is employed to keep the bus waveguide width constant. The mode coupling regions and transmission regions of the microring resonators are designed carefully to selectively couple and transmit different optical modes. The extinction ratio of the microring resonators is larger than 21.0 dB. The mode and wavelength cross-talk for directly (de)multiplexing are less than −12.8 dB and −19.0 dB, respectively. It would be a good candidate for future large-scale multidimensional optical networks.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Wuhan National Laboratory for Optoelectronics
Australian Research Council
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献