Light field quality assessment based on aggregation learning of multiple visual features

Author:

Liu ChangORCID,Zou Zhuocheng,Miao Yuan,Qiu Jun

Abstract

Light field imaging is a way to represent human vision from a computational perspective. It contains more visual information than traditional imaging systems. As a basic problem of light field imaging, light field quality assessment has received extensive attention in recent years. In this study, we explore the characteristics of light field data for different visual domains (spatial, angular, coupled, projection, and depth), study the multiple visual features of a light field, and propose a non-reference light field quality assessment method based on aggregation learning of multiple visual features. The proposed method has four key modules: multi-visual representation of a light field, feature extraction, feature aggregation, and quality assessment. It first extracts the natural scene statistics (NSS) features from the central view image in the spatial domain. It extracts gray-level co-occurrence matrix (GLCM) features both in the angular domain and in the spatial-angular coupled domain. Then, it extracts the rotation-invariant uniform local binary pattern (LBP) features of depth map in the depth domain, and the statistical characteristics of the local entropy (SDLE) features of refocused images in the projection domain. Finally, the multiple visual features are aggregated to form a visual feature vector for the light field. A prediction model is trained by support vector machines (SVM) to establish a light field quality assessment method based on aggregation learning of multiple visual features.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

QinXin Talents Cultivation Progra

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Splitting the backbone: A novel hierarchical method for assessing light field image quality;Optics and Lasers in Engineering;2024-07

2. A multi-visual information synthesis function model-based technique is being looked at for autonomous vehicle detection and monitoring;Third International Conference on Electronics, Electrical and Information Engineering (ICEEIE 2023);2023-10-27

3. Using a Diverse Neural Network to Predict the Quality of Light Field Images;2023 IEEE 25th International Workshop on Multimedia Signal Processing (MMSP);2023-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3