Relationship between the sensitivity and beam splitting ratio, conversion efficiency, and local oscillator power in balanced detection

Author:

Wu Cong1,Zhang Xiaoxia1,Zhou Jiangtao1,Zou Lingbo1,Yan Rui1

Affiliation:

1. University of Electronic Science and Technology of China

Abstract

Balanced detection, which is becoming increasingly essential for wireless communication and optical fiber communication, has been extensively studied in recent years. However, the relationships between the sensitivity and the other parameters have not yet been comprehensively ascertained. In this work, the relationship between the sensitivity and the local oscillator power P l o , consistency parameter Δ α , and beam splitting ratio ε in balanced detection is explored through numerical and communication system simulations. If ε decreases, the sensitivity increases, and the corresponding P l o decreases. With the increase or decrease in Δ α , ε corresponding to the minimum sensitivity shifts toward the right or left, respectively. This shift increases with the increase in the absolute value of Δ α , and the minimum value of the sensitivity increases. When the absolute values of Δ α are equal, their curves are almost symmetrical. As ε approaches 0.5, the tolerable maximum of P l o becomes higher. At any instant, the average value of the quantum efficiency of the two photodiodes is more critical than the maximum quantum efficiency and balance. This work facilitates thorough understanding of the sensitivity of balanced detection, which can be beneficial for future optical communication design.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3