Propagation of auto-focusing hypergeometric Gaussian beams along a slant path in oceanic turbulence

Author:

Wang Wenhai,Yu Zhou,Liu Chengzhao,Zhou Xu,Hu Zheng-Da1,Zhu Yun1ORCID

Affiliation:

1. Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology

Abstract

Compared to horizontal transmission, the oceanic dissipation rate and temperature-salinity distribution ratio are no longer constant but vary with depth, imposing greater complexity on oceanic turbulence when beams propagate through a slant path and resulting in more limitations on the performance of underwater wireless optical communication (UWOC) links. This study focuses on investigating the performance, especially the auto-focusing characteristic, of auto-focusing hypergeometric Gaussian (AHGG) beams propagating along slant paths in oceanic turbulence. We theoretically derive the spatial coherence radius and the relative probability of the orbital angular momentum (OAM) mode for AHGG beams passing through such links. Numerical simulations reveal that AHGG beams exhibit superior propagation performance compared to hypergeometric Gaussian beams. Lower beam orders and OAM numbers contribute to improved performance, while careful selection of auto-focusing length can tangibly enhance detection performance as well. Additionally, tidal velocities and wind speeds have nonnegligible effects on OAM signal probability. Our results further demonstrate that surface buoyancy flux, temperature gradients, and waterside friction velocity significantly affect beam transmission under varying wind conditions. These findings, particularly controlling the auto-focusing length of AHGG beams to match the transmission distance, provide valuable insights for enhancing the quality of UWOC links.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3