Two-dimensional phase unwrapping based on U2-Net in complex noise environment

Author:

Chen Jie1,Kong Yong2,Zhang Dawei1ORCID,Fu Yinghua1ORCID,Zhuang Songlin1

Affiliation:

1. University of Shanghai for Science and Technology

2. Shanghai University Of Engineering Science

Abstract

This paper proposes applying the nested U2-Net to a two-dimensional phase unwrapping (PU). PU has been a classic well-posed problem since conventional PU methods are always limited by the Itoh condition. Numerous studies conducted in recent years have discovered that data-driven deep learning techniques can overcome the Itoh constraint and significantly enhance PU performance. However, most deep learning methods have been tested only on Gaussian white noise in a single environment, ignoring the more widespread scattered noise in real phases. The difference in the unwrapping performance of deep network models with different strategies under the interference of different kinds of noise or drastic phase changes is still unknown. This study compares and tests the unwrapping performance of U-Net, DLPU-Net, VUR-Net, PU-GAN, U2-Net, and U2-Netp under the interference of additive Gaussian white noise and multiplicative speckle noise by simulating the complex noise environment in the real samples. It is discovered that the U2-Net composed of U-like residual blocks performs stronger anti-noise performance and structural stability. Meanwhile, the wrapped phase of different heights in a high-level noise environment was trained and tested, and the network model was qualitatively evaluated from three perspectives: the number of model parameters, the amount of floating-point operations, and the speed of PU. Finally, 421 real-phase images were also tested for comparison, including dynamic candle flames, different arrangements of pits, different shapes of grooves, and different shapes of tables. The PU results of all models are quantitatively evaluated by three evaluation metrics (MSE, PSNR, and SSIM). The experimental results demonstrate that U2-Net and the lightweight U2-Netp proposed in this work have higher accuracy, stronger anti-noise performance, and better generalization ability.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3