Packaged structure optimization for enhanced light extraction efficiency and reduced thermal resistance of ultraviolet B LEDs

Author:

Liu Chun Nien1,Hu Chia Chun,Zheng Yang Jun,Hsu Yu Fu,Ye Zhi TingORCID

Affiliation:

1. National Chung Hsing University

Abstract

Ultraviolet B light-emitting diodes (UVB LEDs) hold promise in medical and agricultural applications. The commonly used sapphire substrate for their epitaxy growth possesses a high refractive index and excellent UV light absorption characteristics. However, this high refractive index can induce total internal reflection (TIR) within the substrate, leading to decreased Light Extraction Efficiency (LEE) due to light absorption within the material. In this study, UVB LED chips were detached from the sub-mount substrate and directly affixed onto an aluminum nitride (AlN) substrate with superior heat dissipation using a eutectic process. This was undertaken to diminish packaged thermal resistance (PTR). Simultaneously, optimization of the UVB LED packaging structure was employed to alleviate LEE losses caused by the TIR phenomenon, with the overarching goal of enhancin external quantum efficiency (EQE). The final experimental findings suggest that optimal LEE is achieved with packaging dimensions, including a length (ELL) of 2 mm, a width (ELW) of 1.62 mm, and a height (ELH) of 0.52 mm. At an input current of 200 mA, the output power reaches 50 mW, resulting in an EQE of 6.3%. Furthermore, the packaged thermal resistance from the chip to the substrate surface can be reduced to 4.615 K/W.

Funder

National Science and Technology Council

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3