Abstract
We design, fabricate, and characterize a compact dual-mode waveguide crossing on a silicon-on-insulator platform. The dual-mode waveguide crossing with high performance is designed by utilizing the adjoint shape optimization. This adjoint-method-based optimization algorithm is computationally efficient and yields the optimal solution in fewer iterations compared with other iterative schemes. Our proposed dual-mode waveguide crossing exhibits low insertion loss and low crosstalk. Experimental results show that the insertion losses at the wavelength of 1550 nm are 0.83 dB and 0.50 dB for TE0 and TE1 modes, respectively. The crosstalk is less than −20 dB for the two modes over a wavelength range of 80 nm. The footprint of the whole structure is only 5 × 5 μm2.
Funder
Tsinghua Shenzhen International Graduate School-Shenzhen Pengrui Young Faculty Program of Shenzhen Pengrui Foundation
Basic and Applied Basic Research Foundation of Guangdong Province
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献