Inverse design of an ultra-compact dual-band wavelength demultiplexing power splitter with detailed analysis of hyperparameters

Author:

Sun AolongORCID,Deng Xuyu,Xing Sizhe,Li ZhongyaORCID,Jia JunlianORCID,Li GuoqiangORCID,Yan An,Luo Penghao,Li Yixin,Luo Zhiteng,Shi JianyangORCID,Li ZiweiORCID,Shen ChaoORCID,Hong Bingzhou1,Chu Wei1,Xiao Xi2,Chi NanORCID,Zhang JunwenORCID

Affiliation:

1. Zhangjiang Lab

2. China Information and Communication Technologies Group Corporation (CICT)

Abstract

Inverse design has been widely studied as an efficient method to reduce footprint and improve performance for integrated silicon photonic (SiP) devices. In this study, we have used inverse design to develop a series of ultra-compact dual-band wavelength demultiplexing power splitters (WDPSs) that can simultaneously perform both wavelength demultiplexing and 1:1 optical power splitting. These WDPSs could facilitate the potential coexistence of dual-band passive optical networks (PONs). The design is performed on a standard silicon-on-insulator (SOI) platform using, what we believe to be, a novel two-step direct binary search (TS-DBS) method and the impact of different hyperparameters related to the physical structure and the optimization algorithm is analyzed in detail. Our inverse-designed WDPS with a minimum feature size of 130 nm achieves a 12.77-times reduction in footprint and a slight increase in performance compared with the forward-designed WDPS. We utilize the optimal combination of hyperparameters to design another WDPS with a minimum feature size reduced to 65 nm, which achieves ultra-low insertion losses of 0.36 dB and 0.37 dB and crosstalk values of -19.91 dB and -17.02 dB at wavelength channels of 1310 nm and 1550 nm, respectively. To the best of our knowledge, the hyperparameters of optimization-based inverse design are systematically discussed for the first time. Our work demonstrates that appropriate setting of hyperparameters greatly improves device performance, throwing light on the manipulation of hyperparameters for future inverse design.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

the Major Key Project PCL

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3