Deep learning based image quality improvement of a light-field microscope integrated with an epi-fluorescence microscope

Author:

Nakatani Noriyuki,Shinke Ryo,Quan Xiangyu1,Murata Takashi2,Matoba Osamu1ORCID

Affiliation:

1. Kobe University

2. Kanagawa Institute of Technology

Abstract

Light-field three-dimensional (3D) fluorescence microscopes can acquire 3D fluorescence images in a single shot, and followed numerical reconstruction can realize cross-sectional imaging at an arbitrary depth. The typical configuration that uses a lens array and a single image sensor has the trade-off between depth information acquisition and spatial resolution of each cross-sectional image. The spatial resolution of the reconstructed image degrades when depth information increases. In this paper, we use U-net as a deep learning model to improve the quality of reconstructed images. We constructed an optical system that integrates a light-field microscope and an epifluorescence microscope, which acquire the light-field data and high-resolution two-dimensional images, respectively. The high-resolution images from the epifluorescence microscope are used as ground-truth images for the training dataset for deep learning. The experimental results using fluorescent beads with a size of 10 µm and cultured tobacco cells showed significant improvement in the reconstructed images. Furthermore, time-lapse measurements were demonstrated in tobacco cells to observe the cell division process.

Funder

Japan Society for the Promotion of Science

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3