Cascading auto-regressive exponential smoothing of image sequences for reducing turbulence induced motion

Author:

Potvin Guy,McGaughey Donald1

Affiliation:

1. Electrical and Computer Engineering

Abstract

Atmospheric turbulence can significantly degrade images taken over a long horizontal path near the ground. This can hinder the identification of objects in a scene. We consequently introduce the Cascading Auto-Regressive Exponential Smoothing (CARES) algorithm, which is a fast real-time algorithm that suppresses the effects of atmospheric turbulence in image sequences. CARES is a spatial/temporal filtering algorithm that decomposes the image into a Laplacian Image Pyramid (LIP). Each component of the LIP represents the image smoothed to a specific length scale, which is then temporally filtered using an Auto-Regressive Exponential Smoothing (ARES) filter. The ARES filters have a cut-off frequency that are adjusted in such a way for each LIP component to define a critical velocity. Objects in the scene moving below the critical velocity pass through the CARES filter with little distortion or delay. We assess the performance of CARES using turbulent imaging data. We find that CARES improves image quality using a variety of image quality metrics. We use a simple CARES simulation to show that the salient features of a moving object lag behind by one pixel or less.

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3