Affiliation:
1. University of Basel
2. New York University Abu Dhabi
3. New York University
Abstract
Optical coherence tomography (OCT) combined with an ablative Er:YAG laser has been recognized as a promising technique for real-time monitoring and controlling the depth of laser-induced cuts during laser osteotomy procedures. In this study, a miniaturized OCT-assisted Er:YAG laser system was developed for controlled laser ablation of bone tissue. The developed system involved coupling a high-power Er:YAG laser into a sapphire fiber with a core diameter of 425 µm and miniaturizing the sample arm of a long-range swept-source OCT system. Controlled laser osteotomy experiments were performed to evaluate the performance of the miniaturized setup. Real-time depth monitoring and control were achieved through an optical shutter controlled by the OCT system. The experimental results showed controlled ablation with a mean accuracy of 0.028 mm when targeting depths of 1 mm, 3 mm, and 5 mm on cow femur bones. These results demonstrate the potential of the developed miniaturized OCT-assisted Er:YAG laser system for use in robotic-assisted minimally-invasive laser osteotomy.
Funder
Funding was provided by the Werner Siemens Foundation through the Minimally Invasive Robot-Assisted Computer-guided LaserosteotomE (MIRACLE) project.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献