Using a deep learning algorithm in image-based wavefront sensing: determining the optimum number of Zernike terms

Author:

Shohani Jafar Bakhtiar,Hajimahmoodzadeh MortezaORCID,Fallah HamidrezaORCID

Abstract

The turbulent atmosphere usually degrades the quality of images taken on Earth. Random variations of the refractive index of light cause distortion of wavefronts propagating to ground-based telescopes. Compensating these distortions is usually accomplished by adaptive optics (AO) approaches. The control unit of AO adjusts the phase corrector, such as deformable mirrors, based on the incoming turbulent wavefront. This can be done by different algorithms. Usually, these algorithms encounter real-time wavefront compensation challenges. Although many studies have been conducted to overcome these issues, we have proposed a method, based on the convolutional neural network (CNN) as a branch of deep learning (DL) for sensor-less AO. To this objective, thousands of wavefronts, their Zernike coefficients, and corresponding intensity patterns in diverse conditions of turbulence are generated and fed into the CNN to predict the wavefront of new intensity patterns. The predictions are done for considering the different number of Zernike terms, and the optimum number is achieved by comparing wavefront errors.

Publisher

Optica Publishing Group

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3