Systematic comparison of head mounted display colorimetric performance using various color characterization models

Author:

Bhaumik UjjayantaORCID,Leloup Frédéric B.,Smet KevinORCID

Abstract

The advancement of virtual reality in recent times has seen unprecedented applications in the scientific sphere. This work focuses on the colorimetric characterization of head mounted displays for psychophysical experiments for the study of color perception. Using a head mounted display to present stimuli to observers requires a full characterization of the display to ensure that the correct color is presented. In this paper, a simulation is done to mimic a practical display with color channel interactions and characterization of simulated data is done using the following models: gain offset gamma model, gain offset gamma offset model, gain gamma offset model, piecewise linear assuming chromaticity constancy model, piecewise linear model assuming variation in chromaticity, look-up table model, polynomial regression model, and an artificial neural network model. an analysis showed that the polynomial regression, artificial neural network, and look-up table models were substantially better than other models in predicting a set of rgb values, which can be passed as input to a head mounted display to output desired target xyz values. both the look-up table and polynomial regression models could achieve a just noticeable difference between the actual input and predicted output color of less than 1. the gain offset gamma, gain offset gamma offset, and gain gamma offset models were not effective in colorimetric characterization, performing badly for simulations as they do not incorporate color channel interactions. the gain offset gamma model was the best among these three models and the lowest just noticeable difference it could achieve was over 13, clearly too high for color science experiments.

Funder

Fonds Wetenschappelijk Onderzoek

KU Leuven

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3