Pulsatile retinal nerve fiber layer imaging with functional optical coherence tomography

Author:

An Lin1234,Yan Bixuan1,Zhao Yansong2,He Ke1,Wu Xiaocui1,Lan Gongpu13ORCID,Huang Yanping13,Xu Jingjiang13ORCID,Ou Chubin15,Zeng Xi1,Wang Shuna2,Wang Xiaoli2,Long Jinfeng2,Wei Xunbin36,Qin Jia12345

Affiliation:

1. Guangdong Weiren Meditech Co.

2. Weifang Medical University

3. Foshan University

4. Weiren Medical(Foshan) Co., Ltd

5. Weizhi Meditech(Foshan) Co., Ltd

6. Peking University Cancer Hospital & Institute

Abstract

The retinal nerve fiber layer (RNFL) evaluation is becoming a very effective method for the clinical diagnosis of early glaucoma. The purpose of this paper is to extract the pulsations of the RNFL, which might be used as a novel biomarker for glaucoma diagnosis. To demonstrate that the optical coherence tomography (OCT) could extract the subtle RNFL dynamic pulsatile motion in normal eyes in vivo, the subjects’ retina was imaged by spectral domain optical coherence tomography (SD-OCT) based on histogram RNFL pulse extraction algorithm. Firstly, B-scan images of multiple retinal layers in normal subjects were acquired. The RNFL was identified from each B-scan with a segmentation algorithm based on shortest path and convolutional neural network. Secondly, a histogram-based RNFL pulsation extraction algorithm was proposed to track the displacement of the RNFL which is based on the acquired RNFL B-scan images. Finally, in evaluating the dynamic pulse signal extracted from the pulsating motion of RNFL, an experiment was designed to collect heart rate using an infrared pulse sensor device. The cardiac pulse waveform and the RNFL pulse waveform were compared and analyzed in time and frequency domain. The results show that the extracted RNFL pulse has the same frequency as the cardiac pulse, which validate the feasibility and accuracy of the in vivo extraction scheme used in this paper.

Funder

Guangdong Provincial Pearl River Talents Program

National Natural Science Foundation of China

Thousand Young Talents Program of China

Natural Science Foundation of Shandong Province

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3