PDTANet: a context-guided and attention-aware deep learning method for tumor segmentation of guinea pig colorectal OCT images

Author:

Lyu Jing12,Ren Lin3ORCID,Liu Qinying2,Wang Yan2,Zhou Zhenqiao12ORCID,Chen Yueyan2,Jia Hongbo12,Tang Yuguo12,Li Min12ORCID

Affiliation:

1. University of Science and Technology of China

2. Chinese Academy of Sciences

3. Guangxi University

Abstract

Optical coherence tomography (OCT) technology has significant potential value in the application of early gastrointestinal tumor screening and intraoperative guidance. In the application of diagnosing gastrointestinal diseases, a key step of OCT image intelligent analysis system is to segment the tissues and layers accurately. In this paper, we propose a new encoder-decoder network named PDTANet, which contains a global context-guided PDFF module and a lightweight attention-aware triplet attention (TA) mechanism. Moreover, during the model training stage, we adopt a region-aware and boundary-aware hybrid loss function to learn and update model parameters. The proposed PDTANet model has been applied for automatic tumor segmentation of guinea pig colorectal OCT images. The experimental results show that our proposed PDTANet model has the ability to focus on and connect global context and important feature information for OCT images. Compared with the prediction results of the model trained by the traditional Unet model and Dice loss function, the PDTANet model and a combination of dice and boundary related loss function proposed as the hybrid loss function proposed in this paper have significantly improved the accuracy of the segmentation of tissue boundaries, especially the surface Dice metric, which is improved by about 3%.

Funder

Jiangsu Innovation and Entrepreneurship Team Fund, the Major scientific research facility project of Jiangsu Province

Basic Research Pilot Project of Suzhou

Scientific Instrument Developing Project of the Chinese Academy of Sciences

Scientific Instrument Developing Project of Chinese Academy of Sciences

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3