Rapid scan white light pump–probe spectroscopy with 100 kHz shot-to-shot detection

Author:

Bhat Vivek N.,Thomas Asha S.,Bhattacharyya Atandrita,Tiwari Vivek

Abstract

We demonstrate a femtosecond pump–probe spectrometer that utilizes a white light supercontinuum as input and relies on mutual synchronization of the laser repetition rate, acousto-optical chopper, pump–probe delay stage, and the CCD camera to record shot-to-shot pump–probe spectra while the pump–probe delay is scanned synchronously with the laser repetition rate. The unique combination of technologies implemented here allows for electronically controllable and repetition-rate scalable detection throughput that is only limited by the camera frame rate. Despite high probe RMS fluctuations due to sample scatter (from ∼1.8% with solvent to 7.9% with sample scatter), a combination of fast and slow averaging with a fine sampling of pump–probe delay leads to reduction of RMS noise without multichannel referencing down to ∼0.4 mOD for a scattering nanotube sample. Throughput and limitations of the rapid versus stepwise scanning approaches are analyzed. Experimental comparison with stepwise scan shows ∼1.9x noise reduction in a significantly faster experiment, suggesting an additional suppression of 1/f noise enabled by rapid scan data collection. The particular combination of technologies implemented here makes our approach especially suitable for high throughput impulsive pump–probe micro-spectroscopy of highly scattering samples, without added cost and complexity of light sources, multichannel detection, or long sample exposure.

Funder

Indian Space Research Organisation

Department of Biotechnology, Ministry of Science and Technology, India

Board of Research in Nuclear Sciences

Science and Engineering Research Board

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3