Abstract
3D printing of optical components can broaden access to optical fabrication. However, consumer options for 3D printing have been limited due to the form and roughness requirements for optics. Previous efforts have established a protocol for the fabrication of singlet lenses using a stereolithographic printer and simple post-processing techniques. Here we further elevate this research by building a consumer-grade 3D printed spectrometer utilizing achromatic doublet printed lenses. These lenses are fabricated using stereolithographic printers with a filled cavity and reduce chromatic focal shift by a factor of 6 over singlet lenses. The proof-of-concept spectrometer system incorporates a pinhole, two doublet lenses, and a dispersing prism. Opto-mechanics for the system were fabricated using an FDM 3D printer. Results from the fabricated system closely matched results obtained with a commercially available spectrometer device.
Funder
National Science Foundation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献