Generation of Bessel-like beams with reduced sidelobes for enhanced light-sheet microscopy

Author:

George Jerin Geogy,Dholakia Kishan12ORCID,Bhattacharya ShantiORCID

Affiliation:

1. University of St. Andrews

2. University of Adelaide

Abstract

Bessel beams have found important applications due to their propagation invariant nature. However, the presence of sidelobes has proven a hindrance in key imaging and biophotonics applications. We describe the design and generation of sidelobe-suppressed Bessel-like beams (SSBB) that provide enhanced contrast for light-sheet imaging. The sidelobe suppression is achieved by the interference of two Bessel beams with slightly different wavevectors. Axicon phase functions for each Bessel beam are combined into a single phase function using the random multiplexing technique. This phase function is realised using a spatial light modulator to generate a SSBB. The generated beam at 633 nm has a 1/e 2 radius of 44 µm and a propagation invariant distance of 39 mm which is more than four times that of the Rayleigh range of a Gaussian beam with the same 1/e 2 radius. Within this distance, the overall peak intensity of the sidelobes of the SSBB is less than 10% that of the main lobe peak intensity. In addition, through numerical simulation for the recovery of spatial frequencies, we show that the SSBB improves image contrast compared to a Bessel beam for light-sheet imaging. We also show that the designed phase function can be realised using a meta-optical element.

Funder

Scheme for Promotion of Academic and Research Collaboration

Australian Research Council

H2020 Future and Emerging Technologies

Publisher

Optica Publishing Group

Reference27 articles.

1. Diffraction-free beams

2. Bessel beams: Diffraction in a new light

3. Optical micromanipulation using a Bessel light beam

4. Optical trapping in counter-propagating bessel beams;Cizmar,2004

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3