Tunable double split-ring resonator for quantum sensing using nitrogen-vacancy centers in diamond

Author:

Yang Yan,Wu Qin,Wang YangPeng,Chen WuHui,Yu Zhifei,Yang Xiaofan1,Fan Jing-WeiORCID,Chen BingORCID

Affiliation:

1. State Key Laboratory of Complex Electromagnetic Environment Effects on Electronic and Information System

Abstract

For quantum sensing based on nitrogen-vacancies (NV) ensembles, microwave antennas can couple the microwave field to the NV center, which leads it to becoming the core of spin manipulation and can directly affect the sensitivity of quantum sensing. The double split-ring resonator is a widely used microwave device for NV ensembles due to the advantages of high radiation efficiency and uniform magnetic field in millimeter-scale areas. But the bandwidth (30 MHz) is quite narrow which limits the application in quantum sensing with NV ensembles. Here, we experimentally achieve continuous tuning of the resonant frequency of the double split-ring resonator by changing the copper sheet position on the edge of the outer ring. The frequency tuning range can reach 80 MHz, up to 2-3 times the bandwidth, which can cover the transition of the electron spin under different magnetic field conditions. The performance of the tunable antenna in the quantum operation of NV centers is verified by optically detected magnetic resonance and Rabi oscillation. This tunable antenna is promising in the fabrication of integrated and arrayed quantum sensors based on NV ensembles.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3