Affiliation:
1. Xiamen University
2. Chinese Academy of Sciences
3. Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)
Abstract
Feedback-based wavefront shaping is a promising and versatile technique for enhancing the contrast of a target signal through highly scattering media. However, this technique can fail for low optical signals such as fluorescence and Raman signals or in a reflection setup because the trend in weak feedback signals can be easily overwhelmed by noise. To address this challenge, we develop a technique based on a single acousto-optic deflector (AOD) to create a signal with a selected beat frequency from optical signals that can serve as feedback, in which the phase distribution of various radio frequency components of the driving signal for the AOD is optimized for wavefront shaping. By shifting incident light frequency with the AOD, the feedback signal at a selected beat frequency can be measured with a high signal-to-noise ratio (SNR) by a lock-in amplifier, thus enabling the enhancement of weak target signals through highly scattering media. It is found that the method of lock-in beat frequency detection can significantly improve fluorescence imaging and Raman spectral measurements in a reflection setup, and thus could be potentially used for in vivo measurements.
Funder
Fujian Minjiang Distinguished Scholar Program, Innovation Laboratory for Sciences and Technologies of Energy Materials (IKKEM) of Fujian Province
Ministry of Education
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献