Increased range and contrast in fog with circularly polarized imaging

Author:

van der Laan John D.ORCID,Redman Brian J.,Segal Jacob W.,Westlake Karl,Wright Jeremy B.ORCID,Bentz Brian Z.ORCID

Abstract

Fogs, low lying clouds, and other highly scattering environments pose a challenge for many commercial and national security sensing systems. Current autonomous systems rely on optical sensors for navigation whose performance is degraded by highly scattering environments. In our previous simulation work, we have shown that polarized light can penetrate through a scattering environment such as fog. We have demonstrated that circularly polarized light maintains its initial polarization state better than linearly polarized light, even through large numbers of scattering events and thus ranges. This has recently been experimentally verified by other researchers. In this work, we present the design, construction, and testing of active polarization imagers at short-wave infrared and visible wavelengths. We explore multiple polarimetric configurations for the imagers, focusing on linear and circular polarization states. The polarized imagers were tested at the Sandia National Laboratories Fog Chamber under realistic fog conditions. We show that active circular polarization imagers can increase range and contrast in fog better than linear polarization imagers. We show that when imaging typical road sign and safety retro-reflective films, circularly polarized imaging has enhanced contrast throughout most fog densities/ranges compared to linearly polarized imaging and can penetrate over 15 to 25 m into the fog beyond the range limit of linearly polarized imaging, with a strong dependence on the interaction of the polarization state with the target materials.

Funder

Sandia National Laboratories

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3