Affiliation:
1. Northwest University
2. Xi’an Key Laboratory of Radiomics and Intelligent Perception
3. Shaanxi Normal University
Abstract
Bioluminescence tomography (BLT) has extensive applications in preclinical studies for cancer research and drug development. However, the spatial resolution of BLT is inadequate because the numerical methods are limited for solving the physical models of photon propagation and the restriction of using tetrahedral meshes for reconstruction. We conducted a series of theoretical derivations and divided the BLT reconstruction process into two steps: feature extraction and nonlinear mapping. Inspired by deep learning, a voxelwise deep max-pooling residual network (VoxDMRN) is proposed to establish the nonlinear relationship between the internal bioluminescent source and surface boundary density to improve the spatial resolution in BLT reconstruction. The numerical simulation and in vivo experiments both demonstrated that VoxDMRN greatly improves the reconstruction performance regarding location accuracy, shape recovery capability, dual-source resolution, robustness, and in vivo practicability.
Funder
National Natural Science Foundation of China
Science and Technology Plan Program in Xi’an
Subject
Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献