Abstract
Collimating a Gaussian beam from an uncollimated laser source has been achieved via the deployment of engineered diffusers (EDs)—also referred to as light shaping diffusers. When compared to conventional pinhole-based optical collimation systems, this method of beam collimation ensures high optical transmission efficiency at the expense of the introduction of additional speckle and a resulting reduction in spatial coherence. Despite a lower collimation quality, these ED-produced collimated beams are attractive and promising in terms of their deployment in various benchtop or tabletop systems that involve shorter beam propagation distances of up to a few meters while requiring a high optical power throughput. This paper aims to further the understanding of collimation quality and propagation properties of ED-produced Gaussian collimated beams via carefully designed experiments and accompanying analysis. We measure and document the beam divergence, Rayleigh distance, and M2 factor, as well as evolution of the wavefront radius of curvature (RoC), of these ED-generated beams over a few meters of propagation—a propagation distance which encapsulates a vast majority of optical systems. We further investigate the changes in the beam profile with the addition of a laser speckle reducer (SR) and compare the ED-produced beams with a near-ideal collimated beam produced with spatial filtering systems.