Estimating uncertainty for the instrument transfer function measurement of 3D scanners

Author:

Jain Swati1,Davies Angela D.1

Affiliation:

1. University of North Carolina at Charlotte

Abstract

Spatial resolution is an important aspect of many optical instruments. It is defined as the ability of surface-topography measuring instruments to distinguish closely spaced surface features. Following convention, spatial resolution can be defined as the spatial frequency response of the instrument, known as the instrument transfer function (ITF). In this paper, we describe the step-artifact approach for estimating the ITF for 3D scanners, discuss step artifact characterization and validation approaches, and present a method to estimate the combined uncertainty of the ITF measurement. The approach is demonstrated using the EinScan-Pro 3D scanner. A step artifact is used for the measurement that takes advantage of the cleaving properties of a single-side polished silicon wafer. The uncertainty analysis includes simulations to estimate the contribution due to influencing factors such as the alignment of the step artifact to the measurement axis, the diffuse versus specular scattering properties of the step edge, and various processing parameter choices.

Funder

Center for Precision Metrology

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3