Affiliation:
1. Chinese Academy of Sciences
Abstract
Herein, we report a novel biological hydrogel-based achromatic refractive-diffractive micro-optical element with single-material apochromatism. Benefiting from the stimulated responsive property of the hydrogel, pH modulation yielded swelling and affected the refractive index of the element, enabling multi-wavelength focusing performance tuning and chromatic aberration adjustment. Using femtosecond laser lithography, we fabricated a separate hydrogel microlens and Fresnel zone plate and measured the tunable focusing performance while varying pH; the results were consistent with our simulation results. Furthermore, we designed and fabricated a hydrogel-based achromatic refractive-diffractive micro-optical element and demonstrated achromatism with respect to three wavelengths using only one material consisting of a microlens and a Fresnel zone plate. We characterized the optical focusing properties and observed smaller chromatic aberration. The potential applications of such hybrid microoptical elements include biomedical imaging and optical biology sensing.
Funder
Shanghai Sailing Program
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献