Affiliation:
1. Key Laboratory of Trans-scale Laser Manufacturing Technology (Beijing University of Technology)
Abstract
As a compact interferometry technique, self-mixing interferometry (SMI) is a promising tool for micro particle detection in biochemical analysis and the monitoring of laser manufacturing processing, and currently SMI based micro particle detection is attracting increasing attention. However, unlike the typical displacement or vibration measurement driven by a macro target, only a small amount of literature has targeted the SMI effect induced by a single micro moving particle. In this paper, two numerical models were investigated to describe the characteristics of the signal sparked by individual particle. We compared the measurement results with the two models’ simulations in three signal characteristic aspects: the temporal waveform, frequency spectrum, and phase profile. From these results, we established that both amplitude modulation and frequency modulation effects apply under different conditions in the self-mixing process. And for the first time, we analyzed the effect of the laser illumination spot size on the particle-induced SMI signal features with two optical arrangements. When the laser beam size is larger than the particle size, the signal bursts are likely to result from frequency modulation, and vice versa. Our results can improve the capability of SMI technology in particle size discrimination and particle sorting.
Funder
National Natural Science Foundation of China
General Program of Science and Technology Development Project of Beijing Municipal Education Commission
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献