Bridging the gap between resonance and adiabaticity: a compact and highly tolerant vertical coupling structure

Author:

Yao Chunhui1,Cheng Qixiang1ORCID,Roelkens Günther2,Penty Richard1

Affiliation:

1. University of Cambridge

2. Ghent University-imec

Abstract

We present a compact, highly tolerant vertical coupling structure, which can be a generic design that bridges the gap between conventional resonant couplers and adiabatic couplers for heterogeneously integrated devices. We show insights on relaxing the coupler alignment tolerance and provide a detailed design methodology. By the use of a multisegmented inverse taper structure, our design allows a certain proportion of the odd supermode to be excited during the coupling process, which simultaneously facilitates high tolerance and compactness. With a total length of 87 μm, our coupler is almost threefold shorter than the state-of-the-art alignment-tolerant adiabatic couplers and outperforms them by demonstrating a more than 94% coupling efficiency (for < 0.3    dB coupling loss) with ± 1    μm misalignment tolerance, which, to our best knowledge, is a new record for III-V-on-silicon vertical couplers. Furthermore, our design has high tolerance to fabrication-induced structural deformation and ultrabroad bandwidth. These features make it particularly suitable for building densely integrated III-V-on-silicon photonic circuits with commercially available microtransfer printing assembly tools. The proposed design can be widely adopted in various integration platforms.

Funder

Horizon 2020 Framework Programme

Engineering and Physical Sciences Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3