Analyzing the impact of medium access control protocol design and control-plane uplink in asymmetric RF/OWC networks with RF congestion

Author:

Rahaim MichaelORCID,Govindasamy Siddhartan1

Affiliation:

1. Boston College

Abstract

As the demand for wireless capacity continues to grow, highly directional wireless communication technologies have the potential to provide massive gains in area spectral efficiency. However, novel challenges arise when considering bidirectional connectivity and multi-cell/multi-user systems with highly directional links. Some of these challenges can be alleviated with the introduction of asymmetric connectivity where the highly directional links are used solely for downlink transmission. As an example, we consider asymmetric links with an optical wireless communication (OWC) downlink and sub-6 GHz RF uplink. More specifically, we consider visible light communication as an instance of OWC, although the presented analysis and validation are applicable to alternative OWC technologies and other simplex downlink transmission technologies. While asymmetric connectivity has been previously demonstrated in scenarios like this, the impact of control-plane asymmetry has not been explored, to our knowledge. In this paper, we first introduce the novel challenges related to local handshaking in wireless networks with control-plane asymmetry. We then develop a theoretical framework for throughput analysis in a network where the sub-6 GHz RF channel is shared between a conventional RF link and an asymmetric RF/OWC link. This analysis is validated via simulation and verified in a testbed system using Mango WARP3 software defined radios and a commercially available RF access point. Finally, we use the derived throughput equations to analyze the impact of various protocol parameters and demonstrate one potential use of the derived equations to evaluate sum throughput in the presence of an unreliable OWC link.

Funder

National Science Foundation

Publisher

Optica Publishing Group

Subject

Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mitigating nonlinear distortions of high-powered LEDs for VLC using deep neural networks;Optics Communications;2024-01

2. A Low-Cost Open-Source Testbed for Experimental Analysis of Ultra-Dense Wireless Networks;Proceedings of the Int'l ACM Conference on Modeling Analysis and Simulation of Wireless and Mobile Systems;2023-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3