Affiliation:
1. Zhejiang A&F University
Abstract
We propose a speckle-based optical encryption scheme by using complex-amplitude coding and deep learning, which enables the encryption and decryption of complex-amplitude plaintext containing both amplitude and phase images. During encryption, the amplitude and phase images are modulated using a superpixel-based coding technique and feded into a digital micromirror device. After passing through a 4f system, the information undergoes disturbance modulation by a scattering medium, resulting in a diffracted speckle pattern serving as the ciphertext. A Y-shaped convolutional network (Y-Net) model is constructed to establish the mapping relationship between the complex-amplitude plaintext and ciphertext through training. During decryption, the Y-Net model is utilized to quickly extract high-quality amplitude and phase images from the ciphertext. Experimental results verify the feasibility and effectiveness of our proposed method, demonstrating that the potential of integrating speckle encryption and deep learning for optical complex-amplitude encryption.
Funder
National Natural Science Foundation of China
Scientific Research and Developed Fund of Zhejiang University of Science and Technology
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献