Affiliation:
1. King Saud University
2. Missouri University of Science and Technology
Abstract
Optical frequency domain reflectometry (OFDR) based distributed strain sensors are the preferred choice for achieving accurate strain measurements over extensive sensing ranges while maintaining exceptional spatial resolution. However, the simultaneous realization of high spatial resolution, high strain resolution, large strain range, and an extended sensing range presents an exceedingly challenging endeavor. In this study, we introduce and experimentally demonstrate a data and physics-driven neural network-empowered OFDR system designed to attain high-performance distributed sensing. In our experiments, we successfully maintained an impressive sensing resolution of sub-microstrain (0.91 με) alongside a sharp spatial resolution of sub-millimeter (0.857 mm) across a 140-m sensing range. To the best of our knowledge, this marks the inaugural experimental demonstration of OFDR-based distributed sensing, combining sub-millimeter spatial resolution and sub-με strain resolution across a lengthy sensing range over a hundred meters. This pioneering work unveils new pathways for the development of ultra-high-performance optical fiber sensing systems, paving the way for the next generation of intelligent systems tailored for diverse smart industrial applications.
Funder
Research Initiation Project of Zhejiang Lab
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献