Affiliation:
1. Jiaxing Research Institute Zhejiang University
2. Shanxi University
Abstract
An optical field with sub-nm confinement is essential for exploring atomic- or molecular-level light-matter interaction. While such fields demonstrated so far have typically point-like cross-sections, an optical field having a higher-dimensional cross-section may offer higher flexibility and/or efficiency in applications. Here, we propose generating a nanoscale blade-like optical field in a coupled nanofiber pair (CNP) with a 1-nm-width central slit. Based on a strong mode coupling-enabled slit waveguide mode, a sub-nm-thickness blade-like optical field can be generated with a cross-section down to ∼0.28 nm×38 nm at 1550 nm wavelength (i.e., a thickness of ∼λ0/5000) and a peak-to-background intensity ratio (PBR) higher than 20 dB. The slit waveguide mode of the CNP can be launched from one of the two nanofibers that are connected to a standard optical fiber via an adiabatical fiber taper, in which a fundamental waveguide mode of the fiber can be converted into a high-purity slit mode with high efficiency (>98%) within a CNP length of less than 10 μm at 1550 nm wavelength. The wavelength-dependent behaviors and group velocity dispersion in mode converting processes are also investigated, showing that such a CNP-based design is also suitable for broadband and ultrafast pulsed operation. Our results may open up new opportunities for studying light-matter interaction down to the sub-nm scale, as well as for exploring ultra-high-resolution optical technology ranging from super-resolution nanoscopy to chemical bond manipulation.
Funder
New Cornerstone Science Foundation
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Fundamental Research Funds for the Central Universities
National Key Research and Development Program of China
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献