Real-time 3D shape measurement of dynamic scenes using fringe projection profilometry: lightweight NAS-optimized dual frequency deep learning approach

Author:

Li Yueyang,Wu ZhouejieORCID,Shen JunfeiORCID,Zhang QicanORCID

Abstract

Achieving real-time and high-accuracy 3D reconstruction of dynamic scenes is a fundamental challenge in many fields, including online monitoring, augmented reality, and so on. On one hand, traditional methods, such as Fourier transform profilometry (FTP) and phase-shifting profilometry (PSP), are struggling to balance measuring efficiency and accuracy. On the other hand, deep learning-based approaches, which offer the potential for improved accuracy, are hindered by large parameter amounts and complex structures less amenable to real-time requirements. To solve this problem, we proposed a network architecture search (NAS)-based method for real-time processing and 3D measurement of dynamic scenes with rate equivalent to single-shot. A NAS-optimized lightweight neural network was designed for efficient phase demodulation, while an improved dual-frequency strategy was employed coordinately for flexible absolute phase unwrapping. The experiment results demonstrate that our method can effectively perform 3D reconstruction with a reconstruction speed of 58fps, and realize high-accuracy measurement of dynamic scenes based on deep learning for what we believe to be the first time with the average RMS error of about 0.08 mm.

Funder

National Natural Science Foundation of China

National Postdoctoral Program for Innovative Talents

Sichuan Science and Technology Program

Key Science and Technology Research and Development Program of Jiangxi Province

Young Elite Scientists Sponsorship Program by CAST

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3