Affiliation:
1. University of Science and Technology of China
2. TuringQ Co., Ltd.
Abstract
To realize a large-scale quantum network, both quantum memory and the interference of retrieved indistinguishable photons are essentially required to perform multi-photon synchronization and quantum-interference-mediated entanglement swapping. Significant progress has been achieved in low-temperature and well-isolated systems. However, linking independent quantum memories at room temperature remain challenging. Here, we present an experimental demonstration of Hong–Ou–Mandel interference between single photons from two independent room-temperature quantum memories. We manage to simultaneously operate two such quantum memories and individually obtain a memory-built-in quantum correlation of Stokes and anti-Stokes photons by a far-off-resonance Duan–Lukin–Cirac–Zoller protocol. We also successfully enhance the Hong–Ou–Mandel interference rate up to about 15 times by increasing each photon rate, which is achieved by coordinating two quantum memories with a repeat-until-success fashion. We observe the visibility of quantum interference up to 75.0% without reduction of any background noise, well exceeding the classical limit of 50%. Our results, together with its straightforward, broadband, and room-temperature features, open up a promising way towards realizing large-scale quantum networks at ambient conditions.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Science and Technology Commission of Shanghai Municipality
Shanghai Municipal Education Commission
China Postdoctoral Science Foundation
Shanghai Talent Program
Zhiyuan Innovative Research Center of Shanghai Jiao Tong University
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献