Hybrid silicon-tellurium-dioxide DBR resonators coated in PMMA for biological sensing

Author:

Bonneville Dawson B.,Albert Mitchell1,Arbi Ramis,Munir MuhammadORCID,Segat Frare Bruno L.ORCID,Miarabbas Kiani KhadijehORCID,Frankis Henry C.,Knights Andrew P.,Turak Ayse1ORCID,Sask Kyla N.1ORCID,Bradley Jonathan D. B.ORCID

Affiliation:

1. McMaster University

Abstract

We report on silicon waveguide distributed Bragg reflector (DBR) cavities hybridized with a tellurium dioxide (TeO2) cladding and coated in plasma functionalized poly (methyl methacrylate) (PMMA) for label free biological sensors. We describe the device structure and fabrication steps, including reactive sputtering of TeO2 and spin coating and plasma functionalization of PMMA on foundry processed Si chips, as well as the characterization of two DBR designs via thermal, water, and bovine serum albumin (BSA) protein sensing. Plasma treatment on the PMMA films was shown to decrease the water droplet contact angle from ∼70 to ∼35°, increasing hydrophilicity for liquid sensing, while adding functional groups on the surface of the sensors intended to assist with immobilization of BSA molecules. Thermal, water and protein sensing were demonstrated on two DBR designs, including waveguide-connected sidewall (SW) and waveguide-adjacent multi-piece (MP) gratings. Limits of detection of 60 and 300 × 10−4 RIU were measured via water sensing, and thermal sensitivities of 0.11 and 0.13 nm/°C were measured from 25–50 °C for SW and MP DBR cavities, respectively. Plasma treatment was shown to enable protein immobilization and sensing of BSA molecules at a concentration of 2 µg/mL diluted in phosphate buffered saline, demonstrating a ∼1.6 nm resonance shift and subsequent full recovery to baseline after stripping the proteins with sodium dodecyl sulfate for a MP DBR device. These results are a promising step towards active and laser-based sensors using rare-earth-doped TeO2 in silicon photonic circuits, which can be subsequently coated in PMMA and functionalized via plasma treatment for label free biological sensing.

Funder

Satellite Canada Innovation Network

Ontario Ministry of Research and Innovation

Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3