Abstract
We demonstrate a novel MIR methane sensor shifting measurement wavelength to SWIR (1.55μm) by using non-linear interferometry. The technique exploits the interference effects seen in three-wave mixing when pump, signal, and idler modes make a double pass through a nonlinear crystal. The method allows sensing at wavelengths where detectors are poor (>3μm) and detection at wavelengths where photon counting sensitivity can be achieved. In a first experimental demonstration, we measured a small methane concentration inside a gas cell with high precision. This interferometer can be built in a compact design for field operations and potentially enable the detection of low concentrations of methane at up to 100m range. Signal-to-noise ratio calculations show that the method can outperform existing short wavelength (∼1.65μm) integrated path differential absorption direct sensing at high (>10−4) non-linear gain.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献