Abstract
Klein’s paradox refers to the transmission of a relativistic particle through a high potential barrier. Although it has a simple resolution in terms of particle-to-antiparticle tunneling (Klein tunneling), debates on its physical meaning seem lasting partially due to the lack of direct experimental verification. In this article, we point out that honeycomb-type photonic crystals (PhCs) provide an ideal platform to investigate the nature of Klein tunneling, where the effective Dirac mass can be tuned in a relatively easy way from a positive value (trivial PhC) to a negative value (topological PhC) via a zero-mass case (PhC graphene). Specifically, we show that analysis of the transmission between domains with opposite Dirac masses—a case hardly be treated within the scheme available so far—sheds new light on the understanding of the Klein tunneling.
Funder
Core Research for Evolutional Science and Technology