Affiliation:
1. European Southern Observatory
Abstract
The paper proposes a Wollaston-type crystal polarizer suitable for broadband operation within the visible spectral band up to the far infrared band based on unique optical materials, mercurous halides (Hg2X2). This paper introduces the general characteristics and optical properties of these birefringent tetragonal optical materials, as well as the general description of a Wollaston prism and the process of its parameter optimization. In general, the Wollaston polarizer is constructed from two combined wedge-shaped prisms. The key parameters that affect the properties of the Wollaston polarizer are then the cut angle of these two prisms and the refractive index of the exploited optical cement (immersion) that bonds the prisms together. The optimal prism cut angles and immersion refractive index are investigated to maximize the Wollaston parameters, such as the transmittance of the polarized radiation and the separation angle of the output orthogonally polarized beams. This process is significantly dependent on the characteristics of all selected mercurous halides (Hg2Cl2, Hg2Br2, Hg2I2). The optimal values of the prism cut angle for each material are selected based on the outlined results. In addition, the Wollaston prism behaviour regarding real radiation propagation is modelled in detail via the Zemax optical studio. The presented models aim to aid in the real design and fabrication of a broadband Wollaston polarizer based on mercurous halides.
Funder
Grant Agency of the Czech Technical University in Prague
Subject
Atomic and Molecular Physics, and Optics