Scalable photonic reservoir computing based on pulse propagation in parallel passive dispersive links

Author:

Cai Xinyi,Yang Shuna,Yang BoORCID,Zhai Yanrong,Jin Tao1,Chi HaoORCID

Affiliation:

1. Zhejiang University

Abstract

We propose and demonstrate a scalable photonic reservoir computing system based on pulse propagation in parallel passive dispersive links. The approach features a simple structure and is composed of passive components, such as dispersive elements and ring resonators. The system utilizes a pulsed laser and employs a multi-channel architecture with dispersive elements for pulse broadening and ring resonators for delay stacking. It is verified for its capability to handle both digital tasks (2-bit Boolean logic operations, header recognition) and analog tasks (Mackey-Glass time-series prediction, Lorenz 63 time-series prediction). A major advantage of the approach lies in its scalability. It has been confirmed that more complex tasks can be processed by using a system with more channels, along with dispersive elements and ring resonators with larger dispersion amounts and delays, respectively.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3