Abstract
Holography is promising to fully record and reconstruct the fundamental properties of light, while the limitations of working bandwidth, allowed polarization states, and dispersive response impede further advances in the integration level and functionality. Here, we propose an ultra-broadband holography based on twisted nematic liquid crystals (TNLCs), which can efficiently work in both the visible and infrared regions with a working spectrum of over 1000 nm. The underlying physics is that the electric field vector of light through TNLCs can be parallelly manipulated in the broad spectral range, thus enabling to build the ultra-broadband TNLC hologram by dynamic photopatterning. Furthermore, by introducing a simple nematic liquid crystal (NLC) element, the cascaded device allows for an excellent nondispersive polarization-maintaining performance that can adapt to full-polarization incidence. We expect our proposed methodology of holography may inspire new avenues for usages in polarization imaging, augmented/virtual reality display, and optical encryption.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Innovation Program of Shanghai Municipal Education Commission, Scientific Committee of Shanghai
Shanghai Municipal Education Commission
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献