Abstract
As the transmission matrix of scattering and incident light, the Mueller matrix reflects the polarimetric scattering characteristics of the rough surface, providing a significant reference for the study of light scattering. Currently, few calculations of the Mueller matrix for a two-dimensional randomly rough surface have been carried out by numerical methods. In this paper, we use six polarization states of incident light and calculate their scattering polarization states numerically by finite-difference time-domain method and obtain the rough surface Mueller matrix by combination. To verify the accuracy of the calculated Mueller matrix, the polarization state of the scattering light obtained by simulation is compared with the predicted result, and the maximum relative error is 0.0635, yielding a good result. In addition, we use this method to obtain the Mueller matrix at different incidence angles and investigate the polarization scattering characteristics. The results show that the derived parameters of the Mueller matrix of different media at different incidence angles have distinct trends. This polarization scattering property obtained from the Mueller matrix can be effectively applied to target recognition, material detection, and other fields.
Funder
State Key Laboratory of Laser Interaction with Matter
Natural Science Foundation of Shaanxi Province
111 Project
Subject
Atomic and Molecular Physics, and Optics