Abstract
The tilted fiber Bragg grating (TFBG) with dense comb-like resonances offers a promising fiber-optic sensing platform but could suffer from cross sensitivity dependent on bulk and surface environment. In this work, the decoupling of bulk and surface characteristics (indicated by bulk refractive index (RI) and surface-localized binding film) from each other is attained theoretically with a bare TFBG sensor. This is realized with the proposed decoupling approach based on differential spectral responses of cut-off mode resonance and mode dispersion represented as wavelength interval between P- and S-polarized resonances of the TFBG to the bulk RI and surface film thickness. The results demonstrate that with this method the sensing performance for decoupling bulk RI and surface film thickness is comparative to the cases in which either the bulk or surface environment of the TFBG sensor changes, with the bulk and surface sensitivities over 540 nm/RIU and 12 pm/nm, respectively.
Funder
Natural Science Foundation of Zhejiang Province
National Natural Science Foundation of China
Master’s Innovation Foundation of Wenzhou University
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献